

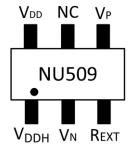
能科技股份有限公司 Single Channel LED Driver

(Preliminary)

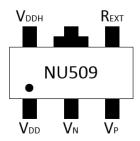
Features

- The most easy used linear constant current LED driver
- Strong bond pad design
- V_{DDH} 7V~60V supply voltage
- V_{DD} 1.8V~14V supply voltage
- 0.3~15V output working voltage
- 10~200mA constant current regulator
- Fast response time, support power supply PWM dimming function
- Less than 1%/V line/load regulation
- 130~160°C junction temperature current ramp down thermal protect
- -40~85°C operating temperature

Product Description


NU509 is a small/medium power linear current regulation component that can be easily used in various LED lighting applications. It is equipped the excellent feature of good load/line regulation capability, minimized chip current skew, stable output current in high power or load voltage fluctuating environment that can be used in wide area of LED lighting source to maintain the uniformity of light intensity.

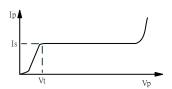
Except for the power supply function, the VDD pin of NU509 is output enable (OE), and can be used in digital PWM controlled circuits for more precise current adjustment in gray level applications.


With the feature of wide power supply range design and ultra low I_{DD} consumption, the NU509 supports the self powered structure in LED lighting applications. In this structure, the NU509 no need to be provided a dedicate power circuit even the system power voltage is much higher than the maximum operation voltage of NU509. The V_{DD} power can be gotten from the proper position in LED series of system.

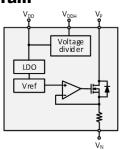
Package Type

SOT23-6

• SOT89-5



Applications


- General LED lighting
- Decoration lighting for architecture
- LED torch / flash light
- RGB lighting
- RGB display / indicator

Ideal IV characteristic

IV curve

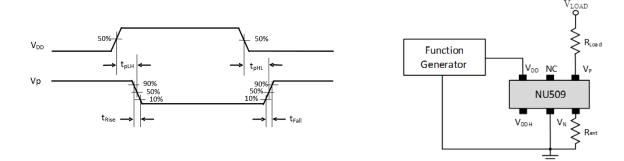
Block Diagram

- 1 - Ver. 01

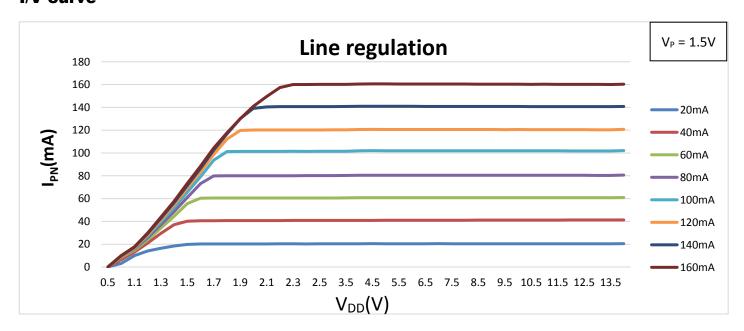
Maximum Ratings (T = 25°C)

Characteristic	Symbol		Rating	Unit	
Supply voltage	V	' _{DD}	-0.2 ~ 15		
Supply voltage	V	DDH	-60~120	V	
Output voltage(Output enable)	V _{PN}	_Enable	-0.2 ~ 14	V	
Output voltage(Output disable)	V _{PN}	Disable	-0.2 ~ 20		
Output current	ı	PN	10 ~ 200	mA	
Downer Dissipation (To 35°C)	PD	SOT 23	0.4	14/	
Power Dissipation (Ta=25°C)	PD	SOT 89	0.7	W	
The word Designation (On DCD Te 25°C)	D	SOT 23	300	96 /14/	
Thermal Resistance (On PCB, Ta=25°C)	$R_{TH(j-a)}$	SOT 89	180	°C /W	
Operating temperature T _{OPR}		-40~+85	°C		
Storage temperature	Т	STG	-55~+150		

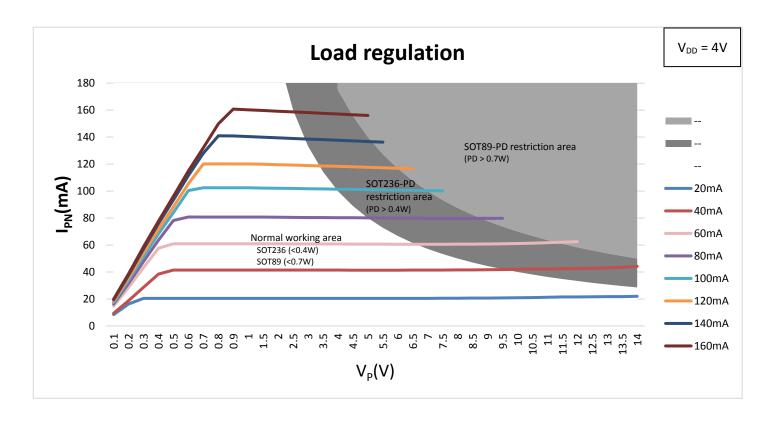
Electrical Characteristics and Recommended Operating Conditions


Characteristic	Symbol	Condition		Min.	Тур.	Max.	Unit
Supply voltage	V_{DD}	Room Temp	$V_{PN} = 1.5V$	1.8	-	15	V
Supply voltage	V _{DDH} *1	Room Temp	Room Temp. V _{PN} = 1.5V		-	60	V
Output voltage	V _{PN_Enable}	V _{DD} > 1.6V,	$P_D \leq P_{D_recomd}$	-	-	14	V
Output voltage	V _{PN_Disable}	V _{DD} <	:0.8V	-	-	20	V
Supply current	Ipp	$V_{DD} \leq 15V$		-	100	120	uA
Supply current	טטו	15V≦V[орн≦60V	0.09	-	2	mA
Naisian and an automate and	V_{PN} $V_{DD} \ge 4V$		$I_s^* \leq 40 \text{mA}$	-	-	0.5	.,
Minimum dropout voltage		I _S ≦ 160mA	-	-	1	V	
Output current	I _{PN}	$V_{DD} \ge 4V$		10	-	160	mA
Leakage	Leakage	$V_{DD} = 0V$,	V _{PN} = 15V	-	-	0.5	uA
Line regulation	%/V _{DD}	13V > \	13V > V _{DD} > 3V		-	±0.5	%/V
Load regulation	%/V _P	9V > V _P	9V > V _{PN} > 0.4V		-	±0.5	%/V
Thermal regulation	%/10°C	V _{DD} = 4V, V _{PN} = 1.5V, Junction temp. < 125°C		-	-	-0.4	%/10°C
Output ramp down temperature	T1	Output enabled		-	130	-	°C
Shutdown temperature	T2	I _{PN} < 10mA		-	160	-	
Chip current skew	I _{Skew}	$V_{DD} = 4V$, $V_{PN} = 1.5V$		-	2	4	%
Dower Dissipation	D D T	Doom Tomp	SOT23	-	-	0.25	W
Power Dissipation	P_{D_recmd}	Room Temp.	SOT89	-	-	0.6	

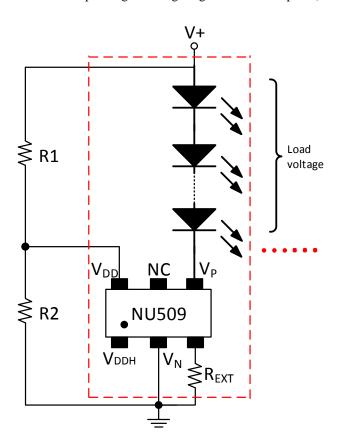
^{*1} V_{DDH} pin is used for non-dimmable lighting.


Switching Characteristics (T = 25°C)

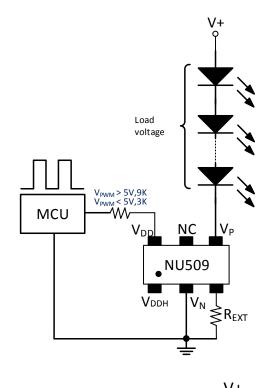
Characteristic	Symbol	Condition	Min.	Тур.	Max.	Unit
Propagation Delay Time	+	V_{PN} =1.5V, V_{DD} = 0V \rightarrow 3.3V		300		
V _{DD} /V _{DDH} from "L" to "H"	t _{pLH_H}	V_{PN} =1.5V, V_{DDH} = 0V \rightarrow 12V	-	300	-	
Output current rising time	t _{Rise_} H	V_{PN} = 1.5V, V_{DD} = 0V \Rightarrow 3.3V	1	300	-	
		V_{PN} = 1.5V, V_{DDH} = 0V \rightarrow 12V				
Propagation Delay Time		V_{PN} =1.5V, V_{DD} =3.3V \rightarrow 0V		50		ns
V _{DD} /V _{DDH} from "H" to "L"	t _{рнс_} н	V_{PN} =1.5V, V_{DDH} =12V \rightarrow 0V	-	50	-	
Output current falling time	t _{Fall_} H	V_{PN} = 1.5V, V_{DD} = 3.3V \rightarrow 0V	-	100	-	
		V_{PN} = 1.5V, V_{DDH} = 12V \rightarrow 0V				

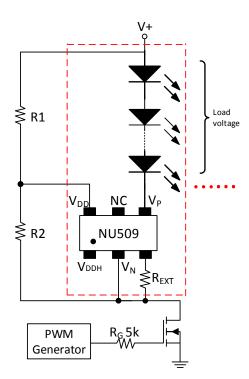

Timing Waveform

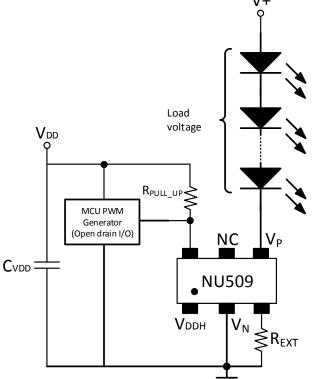
I/V curve



- 3 -


Application Circuits


• DC power general lighting - Low V_{PN} dropout (0.2V~0.8V)



Resistance	R1	R2
12V	36K	-
24V	36K	7K
36V	54K	7K
48V	70K	7K

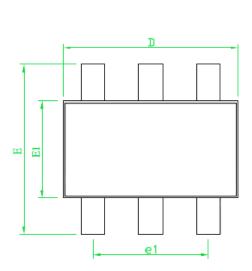
DC PWM dimming application

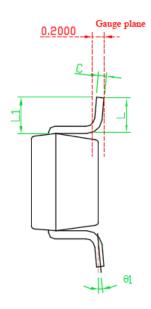
Note 2: The voltage of V_{LED} should follow all the following restrictions:

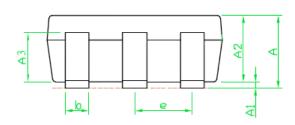
- $1. \qquad V_{LED} \leq \frac{P_{D_recmd}}{I_{PN}} + V_{f_all}$
- $2. V_{LED} \le V_{f_all} + 14$
- $3. \qquad V_{LED} \le 60V$
- W V_{f_all} is total V_f of all LEDs.

Output Current Setting

The output current of NU509 is set by an external resistor (R_{EXT}). The output current can be figured out by following equation.

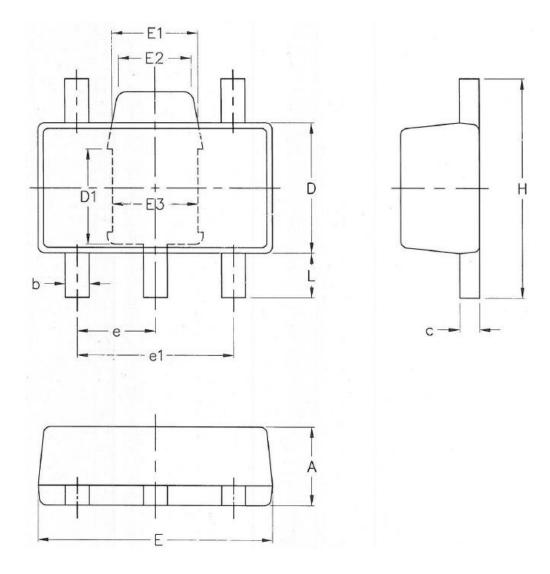

- 5 -


$$I_{OPT} \cong \frac{0.157 V}{R_{EXT} + 0.19 \Omega}$$


Ver. 01

Package Dimensions

• SOT23-6



SYMBOLS	DIMENSIONS IN MILLIMETERS			
STWIDOLS	MIN	NOM	MAX	
A	1.00	1.10	1.40	
A1	0.00		0.10	
A2	1.00	1.10	1.30	
A3	0.70	0.80	0.90	
ь	0.35	0.40	0.50	
C	0.10	0.15	0.25	
D	2.70	2.90	3.10	
E1	1.40	1.60	1.80	
e1		1.90(TYP)		
E	2.60	2.80	3.00	
L	0.37			
θ1	1°	5°	9°	
e		0.95(TYP)		
L1	0.5	0.6	0.7	

• SOT89-5

SY	COMMON				
⊗≻∑BOL/ø	MM		IN	СН	
S	MIN.	MAX.	MIN.	MAX.	
Α	1.41	1.59	0.056	0.063	
b	0.43	0.54	0.017	0.021	
С	0.35	0.44	0.014	0.017	
D	2.41	2.59	0.095	0.102	
D1	1.83 REF		0.072 REF		
Е	4.41	4.59	0.174	0.181	
E1	1.65 REF		0.065 REF		
E2	1.40 REF		0.055	REF	
E3	1.64	1.64 REF		REF	
е	1.50	1.50 BSC 0.059 BS		BSC	
e1	3.00 BSC		0.118 BSC		
Н	4.10	4.25	0.161	0.167	
L	0.80	0.93	0.031	0.037	

- 7 -

Restrictions on product use

- NUMEN Tech. reserves the right to update these specifications in the future.
- The information contained herein is subject to change without notice.
- NUMEN Technology will continually working to improve the quality and reliability of its products. Nevertheless, semiconductor device in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing NUMEN products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such NUMEN products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that NUMEN products are used within specified operating ranges as set forth in the most recent NUMEN products specifications.
- The NUMEN products listed in this document are intended for usage in general electronics applications (lighting system, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These NUMEN products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of NUMEN products listed in this document shall be made at the customer's own risk.